
On the form factors of relevant operators and their cluster property

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 2895

(http://iopscience.iop.org/0305-4470/30/9/007)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 2895–2913. Printed in the UK PII: S0305-4470(97)77874-0

On the form factors of relevant operators and their cluster
property

C Acerbi†‡, G Mussardo†‡§ and A Valleriani†‡
† International School for Advanced Studies, Via Beirut 3, 34014 Trieste, Italy
‡ Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy
§ International Centre of Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy

Received 16 September 1996, in final form 19 November 1996

Abstract. We compute the form factors of the relevant scaling operators in a class of integrable
models without internal symmetries by exploiting their cluster properties. Their identification
is established by computing the corresponding anomalous dimensions by means of the Delfino–
Simonetti–Cardy sum rule and further confirmed it by comparing some universal ratios of the
nearby non-integrable quantum field theories with their independent numerical determination.

1. Introduction

In this work we present a detailed investigation of the matrix elements†
FOa1,a2,...,an

(θ1, . . . , θn) = 〈0|O(0)|Aa1(θ1) . . . Aan(θn)〉 (1.1)

(the so-called form factors (FFs)) in a class of integrable two-dimensional quantum field
theories. Our specific aim is to check some new theoretical ideas which concern the
relationships between three different regimes which two-dimensional quantum field theories
may have, namely the ones ruled by conformal invariance, integrable or non-integrable
dynamics.

Conformal field theories (CFT) and the associated off-critical integrable models (IM)
have been extensively studied in recent years: as a result of these analyses a great deal
of information has been obtained particularly on correlation functions of a large number
of statistical mechanical models in their scaling limit and on physical quantities related
to them (see for instance [1–8]). In this context, a crucial problem often consists of the
determination of the spectrum of the scaling operators away from criticality, namely their
correct identification by means of the set of their FFs. This is one of the issues addressed
in this work.

FFs also play a crucial role in estimating non-integrable effects. Let us first recall
that the above CFT and IM regimes cannot obviously exhaust all possible behaviours that
statistical models and quantum field theories can have since typically they do not possess
an infinite number of conservation laws. This means that in general we have to face all
kinds of phenomena and complications associated to non-integrable models (NIM). The
scattering amplitudes and the matrix elements of the quantum operators will have in these
cases a pattern of analytic singularities due both to the presence of higher thresholds and to

† The rapidity variablesθi conveniently parametrize the dispersion relations of the particles,Ei = mi coshθi ,
pi = mi sinhθi .
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the appearance of resonances. A first step forward in their analysis has recently been taken
in [9] where it has been shown that some interesting examples of NIM may be obtained
as deformations of integrable models. The action of such theories can correspondingly be
written as

A = Aint +
∑
i

λi

∫
d2x 9i(x) (1.2)

Aint being the action of the integrable model. Since the exact expressions (1.1) of the FFs
of the integrable theories are all assumed calculable, in particular, the ones of the fields
9i(x) entering equation (1.2), one is inclined to study the non-integrable effects by using
the Born series based on the FFs. Although at first sight this still remains a difficult task
(and generally, it is indeed so), there may be favourable circumstances where the analysis
simplifies considerably. For instance, as long as there is only a soft breaking of integrability,
it has been shown in [9] that the complications of the higher terms in the series can often
be avoided since the most relevant corrections only come from the lowest approximation.
If this is the case, one can extract an important amount of information with relatively little
effort: a significant set of physical quantities to look at is provided for instance by universal
ratios, such as the ones relative to the variations of the masses or of the vacuum energy
densityEvac: if the breaking of integrability is realized by means of a single field9(x),
those are expressed by

δmi

δmj
= m

(0)
j

m
(0)
i

F9ii (iπ)

F9jj (iπ)

δEvac

m
(0)
1 δm1

= 〈0|9|0〉
F911(iπ)

(1.3)

wherem(0)i refers to the (unperturbed) mass spectrum of the original integrable theory. It is
thus evident that also to estimate the non-integrable effects associated to a given operator
9(x) one must face the problem of correctly identifying its FFs.

Two new results on the relationship between CFT and IM have recently been derived by
Delfino et al [10]. The first result consists of a new sum rule which relates the conformal
dimension1φ of the operatorφ(x) to the off-critical (connected) correlator〈2(x)φ(0)〉c,
where2(x) is the trace of the stress–energy tensor†

1φ = − 1

4π〈φ〉
∫

d2x 〈2(x)φ(0)〉c. (1.4)

This sum rule is closely related to the analogous expression for the conformal central charge,
c [11]

c = 3

4π

∫
d2x |x|2〈2(x)2(0)〉c. (1.5)

Equations (1.4) and (1.5) express elegant relationships between conformal and off-critical
data, but more importantly, they provide very concrete and efficient tools to characterize
the scaling limit of the off-critical models.

As for the second result, it has been suggested by the aforementioned authors of [10],
that the FFs of the relevant scaling fields‡ of an integrable field theory—in absence of

† The sum rule in the form of equation (1.4) may be violated by effect of renormalization of the operators outside
the critical point, as clarified in the original reference [10]. This is however not the case for the field theories and
the operators considered in this work.
‡ Hereafter we shall use the short expression ‘scaling fields’ to actually denote the off-critical operators which
reduce to the scaling fields in the conformal limit.
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internal symmetries—are in one-to-one correspondence with the independent solutions of
the so-calledcluster equations

lim
3→∞

F8a1,a2,...,ak,ak+1,...,ak+l (θ1, θ2, . . . , θk,3+ θk+1, . . . , 3+ θk+l)

= 1

〈8〉F
8
a1,a2,...,ak

(θ1, θ2, . . . , θk)F
8
ak+1,...,ak+l (θk+1, . . . , θk+l). (1.6)

The above limit is supposed to test the ultraviolet regime of the theory since the shift by3

changes the relative energies of the two subsets of particles. In this limit chiral splitting is
expected to occur. Equations (1.6) can be imposed on the FFsin addition to the customary
functional and residue equations which they satisfy (see in this respect also [1, 12]). If this
cluster hypothesisis valid, we would have a clear method to identify the matrix elements
of all the relevant operators, at least in the case of theories without symmetries. It must
be stressed that until now this task has often been a matter of keen guess work and mostly
based on physical intuition.

It turns out that a check of the abovecluster hypothesisprovides a well suited forum for
testing several theoretical aspects. In fact, the most direct way of confirming the above idea
is first to solve the general functional equations of the FFs with the additional constraints of
the cluster equations (1.6) and to see whetherthe number of independent solutions equals
the number of relevant fieldsin the corresponding Kac table. If the above check turns out
to be positive, one may use sum rule (1.4) in order to achieve the correct identification
of the (supposed) primary relevant operatorsφi : from the values of the partial sums one
can in fact infer the value of the anomalous dimension and correspondingly recognize the
operator. Additional confirmation may also come from the employment of equations (1.3)
relative to non-integrable field theories. In fact, one can regard the primary fieldφi(x)

under investigation as that operator which spoils the integrability of the original theory
and therefore compare predictions (1.3) based on its FFs with their independent numerical
determinations which may be obtained by means of the truncation method [13]. Note that
a successful test of this kind could also be interpreted the other way around, namely as a
further proof of the effectiveness of formulae (1.3) in estimating non-integrable effects.

The models on which we have chosen to test the above considerations are integrable
deformations of the first representatives of the non-unitary conformal series† M(2, 2n+1),
n > 2. They belong to the class of universality of solvable RSOS lattice modelsà
la Andrews–Baxter–Forrester although with negative Boltzmann weights [14, 15]: their
simplest example is given by the quantum field theory associated to the so-called Yang–Lee
model which describes the distribution of zeros in the grand canonical partition function
of the Ising model in a complex magnetic field [16, 17]. These models do not have any
internal symmetry and all their fields are relevant operators: hence, they are ideal for our
purposes. Moreover, the nature of their massive and conformal phases is simple enough.
The consequence for their relative simplicity is, however, the presence of typical non-
unitary phenomena, as imaginary coupling constants or negative values of the anomalous
dimensions and central charge, together with the anomalous poles in theS-matrix which
induce an unusual analytic structure in the FFs [4, 17, 18].

† The conformal weights and central charge are given, respectively, by

11,a = − (a − 1)(2n− a)
2(2n+ 1)

a = 1, 2, . . . ,2n

c = −2(6n2 − 7n+ 1)

2n+ 1
n = 2, 3, . . . .
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The paper is organized as follows. In section 2 we discuss the general strategy which
can be employed in order to compute the FFs of the relevant operators in the integrable
deformations of the modelsM(2, 2n+1). In sections 3 and 4 we present a detailed analysis
of the FFs of the modelsM(2, 7) andM(2, 9), which are the first non-trivial examples
on which to check all the theoretical ideas discussed above. In fact, for the first model,
M(2, 5), the cluster hypothesisis easily verified: the only solution of the FF equations is
the sequence of functions determined in [7] which indeed fulfil the cluster equations (1.6)
and are easily identified with the matrix elements of the only relevant field of the Yang–Lee
model. The two modelsM(2, 7) andM(2, 9) represent, somehow, the best playground
for our purposes because they give rise to integrable models under each of their possible
(individual) deformations and also because they optimize the size of the lengthy numerical
output which we present for the solutions of the nonlinear equations. Moreover, although
there is, in principle, no obstacle to extend the analysis to all the modelsM(2, 2n+1), these
are the simplest cases from a computational point of view since the larger the value of the
indexn the higher the order of the system of algebraic equations to be solved to determine
the FFs. Finally, our conclusions are given in section 5. Two appendices complete the
paper: appendix A gathers all important formulae relative to the parametrization of the
two-particle FFs and appendix B collects theS-matrices of the models analysed.

2. Outline of our strategy

In this section we discuss the general strategy needed in order to obtain the FFs of the scaling
primary fields of the integrable deformationsφ1,k of the conformal modelsM(2, 2n + 1)
(hereafter denoted by the shorthand notation [M(2, 2n+ 1)](1,k)). The deforming fieldφ1,k

can be one of the operatorsφ1,2, φ1,3 or possibly some other primary field which gives rise
to an integrable deformation.

The starting point in the computation of the FFs is the correct parametrization of the
two-particle ones which is given in detail in appendix A. This is a non-trivial task in the case
of non-unitary models for the reason that the exactS-matrices of these models are usually
plagued by a plethora of anomalous poles [18]. By this we mean, for example, simple poles
which are not related to any bound state, or, more generally, any poles which apparently
do not have the standard diagrammatic interpretation of [19]. Consider, for example, the
S-matrices listed in the tables of appendix B relative to the integrable deformations of the
modelsM(2, 7) andM(2, 9) where the anomalous poles have been labelled withB, D
or ∗. The origin of these poles may be explained according to the ideas put forward in
[20]. In particular, poles of typeB andD are due to multiparticle processes of the kind
described respectively by the ‘butterfly’ and ‘dragonfly’ diagrams drawn in figures 2 and
3 respectively. These multiloop processes induce in theS-matrix simple poles rather than
higher-order ones because the internal lines of these diagrams cross at relative rapidity
values relative to some zeros of their corresponding two-particleS-matrix element: this
gives rise to a partial cancellation of the poles.

The adopted parametrization for two-particle FFs is directly related to the pole structure
of the S-matrix. This yields expression (A.4) whose functional form is set except for the
coefficientsa(k)ab,8 appearing in expansion (A.8) of the polynomialsQ8

ab(θ). The degreekmax
ab,8

of these polynomials is fixed by the asymptotic behaviour of the FFs for large rapidities
which depends, of course, on the field8 [3]. For the case of two-particle FFs of cluster
operators, it is easy to see that they are subject to have for largeθ at most a constant limit†.

† The limit may vanish in the presence of symmetries.
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Figure 1. Bound-state simple pole diagram.

Figure 2. ‘Butterfly’ diagram. Figure 3. ‘Dragonfly’ diagram.

In fact, for two-particle FFs equations (1.6) read

lim
θ→∞

F8ab(θ) = F8a F8b . (2.1)

Hereafter, we deal with dimensionless cluster operators which are normalized in such a way
as to have a vacuum expectation value equal to one†

〈0|8(0)|0〉 = F80 = 1. (2.2)

† Since the relevant primary operators will be identified with the cluster ones (except for their dimensional factors
which can easily be restored), in the sequel we will adopt the same normalization for them as well.
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In order to fully determine the FFs of the cluster operators we have chosen to focus on the set
of all one- and two-particle FFs. Listing all the relations among them, one obtains a system
of equations in the unknown parametersF8a anda(k)ab,8. Let us see then all information we
have on the FFs.

The first equations that one must consider are thedynamical residue equationsresulting
from the detailed analysis of the poles they are endowed with. These equations relate FFs
with different external particles and may have a different origin. In particular, for every
simple bound state pole of the amplitudeSab at angleθ = iucab relative to the particleAc
(see figure 1), we have

lim
θ→iucab

(θ − iucab)F
8
ab(θ) = i0cabF

8
c (2.3)

where the on-mass-shell three-point coupling constant0cab is given by the residue on the
pole of theS-matrix

lim
θ→iucab

(θ − iucab)Sab(θ) = i(0cab)
2. (2.4)

Dynamical residue equations are also provided by double-order poles and simple-order poles
of type B. Both of them are related to diagrams of the kind shown in figure 2. For each
such diagram, one can write the following equation

lim
θab→iϕ

(θab − iϕ)F8ab(θab) = i0cad0
e
dbF

8
ce(iγ ) (2.5)

whereγ = π − uacd − ubde. In the case ofB poles one can always verify that the amplitude
Sce(θ) has a simple zero atθ = iγ . More complicated residue equations can, in general,
be obtained with reference toD poles and higher-order ones whose explicit expressions—
not reported here—can be however easily written, once the corresponding multiscattering
diagrams have been identified.

It must be stressed that the above set of equations just depend on the dynamics of
the model through itsS-matrix and hold identical for every operator8(x). Therefore, in
general, some residual freedom on the parameters is still expected after imposing these
equations, because they must be satisfied by the FFs of all operators compatible with the
assumed asymptotic behaviour.

Adding to this system oflinear equations thenonlinear cluster equations (2.1) of the
two-particle FFs, one obtains in general a redundant set of compatible equations in all the
unknown parameters of the one- and two-particle FFs. Due to its nonlinearity, the system
allows a multiplicity of solutions which define the so-calledcluster operatorsof the theory†.
If the number of solutions of the system matches the cardinality of the Kac table of the
model one is led to identify them with the families of FFs of the relevant primaries.

Among the cluster solutions, one can first identify the FFs of the deforming fieldφ1,k.
This operator is known to be essentially the trace of the energy–momentum tensor2(x)

since

2(x) = 4πEvacφ1,k (2.6)

Evac being the vacuum energy density which can be easily computed by TBA computations
[21]

Evac= − m2
1

8
∑

x∈P11
sin(πx)

. (2.7)

† In all cases analysed, the smallest system of equations among different FFs which is sufficient to determine their
coefficients turns out to involve just a subset of the two-particle FFs. This suggests that also in the general case
it should be possible to predict the final number of cluster solutions already from a ‘minimal’ system, avoiding in
this way dealing with systems of equations involving a huge number of unknown variables.
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Here the setP11 is defined in equation (A.1) andm1 is the lightest particle mass. In view
of proportionality (2.6), the FFs ofφ1,k can be identified among the cluster solutions by
checking the peculiar equations which characterize the two-particle FFs of2(x) in virtue of
the conservation of the energy–momentum tensor, namely the normalization of the diagonal
two-particle FFs

F2aa(iπ) = 2πm2
a (2.8)

and the factorization of the polynomialQ2
ab for non-diagonal two-particle FFs (a 6= b) into

Q2
ab(coshθ) = (2mamb coshθ +m2

a +m2
b)R

2
ab(coshθ) (2.9)

whereR2ab is a suitable polynomial [1, 3].
Knowing the FFs of2(x), one is then enabled to make use of sum rule (1.4) to compute

the conformal dimension of the operators defined by the remaining cluster solutions in order
to identify them with all the relevant primaries of the theory. This sum rule can be evaluated
by using the spectral representation of the correlator

〈2(x)φ(0)〉c =
∞∑
n=1

∑
ai

∫
θ1>θ2...>θn

dnθ

(2π)n
F2a1,...,an

(θ)F φa1,...,an
(iπ − θ)e−|x|

∑n
k=1mk coshθk .

(2.10)

In all the models we have studied, the corresponding series for sum rule (1.4) displays a very
fast convergence behaviour for any of the cluster operators. The truncated sums obtained
by including just a few contributions have proved sufficient to attain a good approximation
of all the values expected by the Kac table of conformal dimensions. In this way, the one-
to-one correspondence between cluster solutions and primary relevant operators can easily
be set.

Finally, having obtained the FFs of all the relevant fields in each integrable deformation,
as a further check of their correct identification, one may employ formulae (1.3) relative to
the universal ratios of the nearby non-integrable quantum field theories. These predictions
can then be compared with their numerical estimates obtained from the truncated conformal
space (TCS) approach developed in [13]. The agreement between numerical estimates and

Table 1. One-particle form factors of cluster solutions in [M( 2
7)](1,2).

O φ1,2 φ1,3

FO1 0.812 944 7456i 1.245 503 611i
FO2 −0.120 038 7686 −0.465 676 6285

Table 2. Two-particle form factors coefficients of cluster solutions in [M( 2
7)](1,2).

O φ1,2 φ1,3

a
(0)
11,O −0.690 535 5776 −0.417 821 7785

a
(1)
11,O 1.570 496 171 3.686 419 944

a
(0)
12,O 31.912 171 66i 160.820 065 8i

a
(1)
12,O 25.763 371 82i 153.126 224 4i

a
(0)
22,O −12.748 049 09 −71.664 591 55

a
(1)
22,O −3.976 635 89 −59.846 898 51
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Table 3. One-particle form factors of cluster solutions in [M( 2
7)](1,3).

O φ1,2 φ1,3

FO1 0.870 338 7193i 1.408 237 641i
FO2 −0.332 266 1173 −0.869 884 0033

Table 4. Two-particle form factors coefficients of cluster solutions in [M( 2
7)](1,3).

O φ1,2 φ1,3

a
(0)
11,O −1.453 085 043 −3.804 226 098

a
(0)
12,O 10.389 248 46i 30.409 860 50i

a
(1)
12,O 6.420 908 640i 27.199 406 17i

a
(0)
22,O −13.763 819 09 −42.189 514 12

a
(1)
22,O −4.702 281 947 −32.229 921 04

theoretical predictions of the non-integrable effects may provide additional confirmation and
may remove all possible remaining doubts about the validity of the cluster hypothesis for
these models.

3. Integrable deformations ofM(2, 7)

The minimal conformal modelM(2, 7) has, in addition to the identity operatorφ1,1, only
two primary operators,φ1,2 andφ1,3, both of them relevant, the conformal weights being− 2

7

and− 3
7 respectively [4]. The perturbations of the conformal action either by the ‘magnetic

operator’φ1,2 or by the ‘thermal operator’φ1,3 are both known to be, separately, integrable
[18]. TheS-matrices and the mass ratios of the two integrable models are given in tables B1
and B2. In their massive phase, both perturbations have two stable massive particles denoted
by A1 andA2, with a mass ratio and a scattering matrix which depend on the integrable
direction considered. In each case, we expect to find two non-trivial independent families of
FF solutions to the cluster equations (1.6) (in addition to the family of the null FFs relative
to the identity operator).

The FFs of the primary operators of the model relative to the thermal deformation
have already been considered in [8]. Here, we have performed anab initio calculation by
imposing the cluster equations: our result has been in perfect agreement with the FFs of
[8], proving in this way that these cluster solutions are also unique.

The result of the computation of FFs in the two integrable deformations [M(2, 7)](1,2)
and [M(2, 7)](1,3) are summarized in tables 1–2 and 3–4, respectively, where we list the
values of the one-particle FFs and the coefficientsa

(k)
ab,φ of the two-particle FFs relative to

some of the lightest two-particle states. As expected, we find two non-trivial solutions of FFs
families. In each deformation, the FFs of the deforming operator suitably rescaled by (2.6),
can be immediately identified because they satisfy the peculiar equations characterizing
the trace of the energy–momentum tensor (2.8) and (2.9). This is further confirmed by
employing the spectral representation of the correlator〈2(x)2(0)〉c in sum rule (1.5), which
provides in both deformations the value of the central charge with a very high precision
(the relative error being of the order of 10−4–10−5). The identification of both the solutions
with the primariesφ1,2 and φ1,3 is easily established after computing for each solution
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Table 5. Sum rules of the conformal dimensions of primary operators in [M( 2
7)](1,2).

States s 112-terms 113-terms

A1 1.000m1 −0.292 2910 −0.447 8157
A2 1.969m1 0.001 6428 0.006 3729
A1 A1 >2.000m1 0.005 1123 0.013 7590
A1 A2 >2.969m1 −0.000 0763 −0.000 4400
A1 A1 A1 >3.000m1 −0.000 1040 −0.000 4777
A2 A2 >3.939m1 0.000 0003 0.000 0040

Sum −0.285 7159 −0.428 5976
Value expected −0.285 7143 −0.428 5714

Table 6. Sum rules of the conformal dimensions of primary operators in [M( 2
7)](1,3).

States s 112-terms 113-terms

A1 1.000m1 −0.322 1795 −0.521 2974
A2 1.618m1 0.029 0206 0.075 9768
A1 A1 2.000m1 0.009 8699 0.025 8398
A1 A2 2.618m1 −0.002 3149 −0.008 9996
A1 A1 A1 3.000m1 −0.000 3334 −0.001 3803
A2 A2 3.236m1 0.000 1155 0.000 6612

Sum −0.285 8218 −0.429 1998
Value expected −0.285 7143 −0.428 5714

Figure 4. Numerical TCS estimates ofδm1 versusδm2 for different values of the ‘non-
integrable’ coupling in the model [M( 2

7)](1,2)+εφ1,3. The broken line represents the theoretical
prediction.

its UV anomalous dimension by means of sum rule (1.4). The contributions to this sum
rule coming from the dominant lightest multiparticle states are given in tables 5 and 6 for
the two deformations (the contributions are ordered according to increasing values of the
Mandelstam variables of the multiparticle state). The agreement of the truncated sums
with the known values of the anomalous dimensions is very satisfactory given the fast
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Figure 5. Numerical TCS estimates ofδEvac versusm(0)1 δm1 for different values of the ‘non-
integrable’ coupling in the model [M( 2

7)](1,2)+εφ1,3. The broken line represents the theoretical
prediction.

Table 7. One-particle form factors of cluster solutions in [M( 2
9)](1,2).

O φ1,2 φ1,3 φ1,4

FO1 0.754 830 171 7i 1.288 575 652i 1.564 862 744i
FO2 −0.105 690 972 5 −0.459 339 8099 −0.733 160 9072
FO3 −0.013 756 840 37i−0.117 538 9994i−0.285 481 7817i

Table 8. Two-particle form factors coefficients of cluster solutions in [M( 2
9)](1,2).

O φ1,2 φ1,3 φ1,4

a
(0)
11,O −0.381 024 8990 0.128 088 8115 0.644 962 9545

a
(1)
11,O 1.289 925 788 3.759 118 917 5.543 942 595

a
(0)
12,O 14.109 051 83i 75.186 320 19i 110.347 205 6i

a
(1)
12,O −12.743 237 79i −79.908 954 89i −180.984 509 2i

a
(2)
12,O −19.369 980 44i −143.709 687 2i −278.559 252 2i

a
(0)
13,O −1.826 322 080 −18.975 400 47 −51.567 863 33

a
(1)
13,O −1.116 015 559 −16.277 743 86 −48.012 790 71

a
(0)
22,O −1.466 545 085 −3.003 367 424 14.916 065 4

a
(1)
22,O 7.821 352 950 60.495 406 24 160.400 770 5

a
(2)
22,O 2.717 967 823 51.337 734 03 130.787 766 4

a
(0)
23,O 153.827 946 7i 1842.946 063i 5426.663 81i

a
(1)
23,O 175.558 426 8i 2962.508 857i 9796.436 391i

a
(2)
23,O 30.431 247 86i 1130.002 086i 4380.673 323i

a
(0)
33,O −32.421 103 24 −450.093 615 5 −1394.808 207

a
(1)
33,O −20.232 937 66 −589.137 653 0 −2309.626 757

a
(2)
33,O −2.174 915 595 −158.770 199 3 −936.616 509 6

convergency behaviour of the spectral series. In the computation of these sum rules, some
three-particle FF contributions have been inserted as well, although we do give here their
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Table 9. One-particle form factors of cluster solutions in [M( 2
9)](1,3).

O φ1,2 φ1,3 φ1,4

FO1 0.802 076 5716i 1.445 292 066i 1.802 249 672i
FO2 −0.313 911 1339 −1.019 263 084 −1.584 911 324
FO3 −0.137 369 2453i−0.556 196 7434i−1.002 231 818i

Table 10. Two-particle form factors coefficients of cluster solutions in [M( 2
9)](1,3).

O φ1,2 φ1,3 φ1,4

a
(0)
11,O −0.963 149 2344 −3.127 326 026 −4.862 860 736

a
(0)
12,O 10.646 966 13i 40.739 514 64i 72.355 681 81i

a
(1)
12,O 5.908 620 424i 34.570 483 56i 67.032 198 61i

a
(0)
13,O −2.592 348 236 −11.329 779 18 −21.249 129 75

a
(1)
13,O −1.153 703 500 −8.417 302 355−18.913 504 58

a
(0)
22,O −5.978 990 567 −26.440 699 21 −49.876 748 76

a
(1)
22,O −1.544 771 430 −16.286 335 59 −39.378 641 16

exact expression for the sake of simplicity (their general parametrization follows the one
adopted, for instance, in [3]). It should be noticed that the oscillating behaviour of these
sums is typical of non-unitary theories where one expects, in general, both positive and
negative terms.

3.1. Non-integrable deformations ofM(2, 7)

For each possible integrable deformation of the model, the addition of a further orthogonal
deformation breaks its integrability leading, among other things, to corrections of the mass
spectrum and of the vacuum energy. Both corrections can be independently computed by
performing a numerical diagonalization of the off-critical Hamiltonian by means of the
so-called truncation method [13]. We have carried out this analysis by comparing this non-
integrable data with the theoretical predictions by equations (1.3). Let us briefly describe
the output of these studies.

The double non-integrable deformation

[M(2, 7)](1,3) + εφ1,2

for small values ofεm211,2−2
1 has already been studied in [9], where a good agreement

between numerical and theoretical values has been found. Having obtained the FFs for
the φ1,2 deformation, we are now able to complete the analysis by testing the opposite
deformation

[M(2, 7)](1,2) + εφ1,3.

The numerical determination of the two universal ratios of equations (1.3) (for small values
of εm211,3−2

1 ) gives δm1
δm2
= 0.675 and δEvac

δm1
= −0.244m(0)1 with a precision estimated to

be up to a few per cent. These values fully agree with the computed theoretical values
δm1
δm2
= 0.684 04 andδEvac

δm1
= −0.243 65m(0)1 (see, for instance, figures 4 and 5 where the data

relative to the ratiosδm1
δm2

and δEvac
δm1

, respectively, are reported for different values ofε).
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Table 11. One-particle form factors of cluster solutions in [M( 2
9)](1,4).

O φ1,2 φ1,3 φ1,4

FO1 −0.904 354 489 8i −1.727 853 39i −2.211 259 663i
FO2 −0.548 364 896 1 −1.476 188 315 −2.169 493 373
FO3 0.267 331 650 8i 0.870 931 9528i 1.459 023 71i
FO4 −0.084 881 189 64−0.348 974 9771 −0.645 179 5597

Table 12. Two-particle form factors coefficients of cluster solutions in [M( 2
9)](1,4).

O φ1,2 φ1,3 φ1,4

a
(0)
11,O 1.623 982 681 4.256 426 530 6.219 867 507

a
(1)
11,O −0.977 841 1563 −1.325 966 569 −1.477 684 504

a
(2)
11,O −2.029 027 259 −7.406 691 607 −12.130 814 76

a
(0)
12,O −9.935 037 127i −30.489 350 00i −50.024 039 46i

a
(1)
12,O −4.790 105 254i −24.636 860 52i −46.337 733 09i

a
(0)
13,O −45.210 741 97 −145.960 073 0 −220.960 971 0

a
(1)
13,O −441.375 608 6 −1583.189 947 −2731.357 697

a
(2)
13,O −533.323 714 0 −2301.408 527 −4364.089 257

a
(3)
13,O −139.417 354 0 −867.798 450 5 −1860.500 753

a
(0)
14,O 44.340 329 61i 189.607 734 8i 357.835 776 2i

a
(1)
14,O 54.791 940 08i 275.950 767 5i 562.963 880 1i

a
(2)
14,O 11.433 958 82i 89.814 745 54i 212.503 853 9i

a
(0)
22,O −9.190 266 093 −30.910 940 92 −52.205 345 46

a
(1)
22,O −2.709 639 668 −19.636 124 53 −42.412 015 02

a
(0)
23,O −81.758 024 20i −304.224 483 8i −530.887 240 9i

a
(1)
23,O −92.611 281 43i −446.860 116 9i −884.972 303 4i

a
(2)
23,O −16.665 339 65i −146.157 172 0i −359.844 459 9i

4. Integrable deformations ofM(2, 9)

In this section, we turn our attention to theM(2, 9) minimal model which displays a
richer structure in the RG space of relevant couplings. This model has in fact, besides the
identity, three primary operatorsφ1,2, φ1,3 andφ1,4 which are all relevant with conformal
dimensions− 1

3, − 5
9 and− 2

3 respectively. These fields taken separately give rise to different
integrable deformations of the conformal model, each of them characterized by a different
mass spectrum andS-matrix (see tables B3, B4 and B5 in appendix B). In particular, the
first two deformations produce three-particle mass spectra (with different mass ratios) while
the last one gives a four-particle spectrum.

The FFs of the primary operators in theφ1,3-deformation have already been obtained
in [8] and are known to satisfy the cluster property. Again, our derivation of these FFs
as solutions of the cluster equations proves that the FFs found in [8] are the only possible
cluster solutions.

The FFs of the cluster solutions for each of the three above-mentioned deformations have
been computed according to the strategy explained in section 2. The resulting one-particle
FFs and two-particle FFs coefficients are given in tables 7–8, 9–10 and 11–12 respectively.
The important result is that in each integrable deformation of this model, three families of
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Table 13. Sum rules of the conformal dimensions of primary operators in [M( 2
9)](1,2).

States s 112-terms 113-terms 114-terms

A1 1.000m1 −0.340 9847 −0.582 0972 −0.706 9063
A2 1.982m1 0.001 7003 0.007 3894 0.011 7945
A1 A1 >2.000m1 0.006 1957 0.020 7909 0.031 6698
A3 2.931m1 −0.000 0132 −0.000 1126 −0.000 2734
A1 A2 >2.982m1 −0.000 0951 −0.000 7084 −0.001 4392
A1 A1 A1 >3.000m1 −0.000 1421 −0.000 9038 −0.001 7386
A1 A3 >3.931m1 0.000 0009 0.000 0117 0.000 0339
A2 A2 >3.965m1 0.000 0004 0.000 0061 0.000 0157
A2 A3 >4.914m1 −0.000 0000 −0.000 0002 −0.000 0008

Sum −0.333 3379 −0.555 6241 −0.666 8445
Value expected −0.333 3333 −0.555 5556 −0.666 6667

Table 14. Sum rules of the conformal dimensions of primary operators in [M( 2
9)](1,3).

States s 112-terms 113-terms 114-terms

A1 1.000m1 −0.370 679 −0.667 941 −0.832 909
A2 1.802m1 0.031 509 0.102 310 0.159 088
A1 A1 >2.000m1 0.013 898 0.045 127 0.070 170
A3 2.247m1 −0.004 839 −0.019 592 −0.035 304
A1 A2 >2.802m1 −0.003 604 −0.018 722 −0.035 573
A1 A1 A1 >3.000m1 −0.000 628 −0.003 514 −0.006 763
A1 A3 >3.247m1 0.000 663 0.004 114 0.008 844
A2 A2 >3.604m1 0.000 211 0.001 684 0.003 864

Sum −0.333 469 −0.556 534 −0.668 583
Value expected −0.333 333 −0.555 556 −0.666 667

Table 15. Sum rules of the conformal dimensions of primary operators in [M( 2
9)](1,4).

States s 112-terms 113-terms 114-terms

A1 1.000m1 −0.451 081 −0.861 833 −1.102 950
A2 1.486m1 0.121 478 0.327 017 0.480 603
A3 1.956m1 −0.022 989 −0.074 895 −0.125 468
A1 A1 >2.000m1 0.035 896 0.121 577 0.197 637
A1 A2 >2.486m1 −0.023 279 −0.101 138 −0.183 618
A4 2.827m1 0.001 546 0.006 354 0.011 748
A1 A3 >2.956m1 0.004 304 0.022 374 0.045 474
A2 A2 >2.973m1 −0.001 535 −0.009 929 −0.022 429
A2 A3 >3.443m1 −0.000 330 −0.002 101 −0.004 686
A1 A4 >3.827m1 0.003 595 0.020 054 0.040 870

Sum −0.332 396 −0.552 519 −0.662 819
Value expected −0.333 333 −0.555 556 −0.666 667

non-trivial solutions have been found. Among the solutions, we have first identified the FFs
of the deforming field by checking the exact fulfilment of equations (2.8) and (2.9), after
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Table 16. Comparison between numerical and theoretical estimates of data obtained in different
non-integrable deformations ofM(2,9).

δm1

δm2

δEvac

m
(0)
1 δm1

Deformation Numerical (±3%) Theoretical Numerical (±3%) Theoretical

[M(2, 9)](1,2) + εφ1,3 0.590 0.592 049 −0.275 −0.275 404
[M(2, 9)](1,2) + εφ1,4 0.661 0.660 963 −0.204 −0.204 124
[M(2, 9)](1,3) + εφ1,2 0.390 0.391 396 −1.04 −1.038 26
[M(2, 9)](1,3) + εφ1,4 0.811 0.836 81 −0.205 −0.205 640
[M(2, 9)](1,4) + εφ1,2 −0.133 −0.131 367 1.73 1.745 82
[M(2, 9)](1,4) + εφ1,3 0.238 0.240 486 −0.550 −0.548 156

the appropriate rescaling (2.6). Moreover, thec sum rule (1.5) can be easily shown to give
very precise approximations of the central charge in each of the three separate deformations.

As for the other solutions, they have been successfully identified with the FFs of the
primary operators by computing their anomalous dimension by means of equation (1.4).
The first contributions to these sums are given in tables 13–15. In all cases the agreement
with the expected anomalous dimensions of the primaries is established, even though the
convergence of the series is observed to be noticeably faster for lower absolute values of
the anomalous dimension of the deforming field. This observed trend is indeed expected
from the short-distance behaviour of the correlator (2.10), as predicted by the operator
product expansion of the fields. In fact, in the modelsM(2, 2n+ 1) where the fields
have negative anomalous dimensions, this correlator displays a zero at the origin whose
power-law exponent is larger for lower absolute values of the anomalous dimension of
2(x); correspondingly, the smallx region of integration in (1.4) is less relevant making the
lightest multiparticle states more dominant in the series.

4.1. Non-integrable deformations ofM(2, 9)

The availability of the FFs of all the primary fields of the model has allowed us, in each of the
three separate integrable deformations, to consider two different orthogonal non-integrable
deformations. We have then had the possibility of testing the theoretical values obtained for
the universal quantities (1.3) against their numerical TCS estimates in six different multiple
deformations, exploring in this way the non-integrable region around the conformal point of
the model. The outcome of the analysis in all the deformations is summarized in table 16.
Since the precision of TCS data is expected to be of approximately a few per cent, the
comparison with the computed theoretical values is in all cases quite satisfactory.

5. Conclusions

The main purpose of this work has been to substantiate by means of concreteab initio
calculations the cluster hypothesis for the FFs of the relevant operators in integrable
quantum field theories obtained as deformation of a conformal action. We have studied,
in particular, the matrix elements of the primary operators in the integrable deformations
of the first models of the non-unitary seriesM(2, 2n+ 1). In all cases analysed, we have
confirmed the cluster hypothesis since we have found a one-to-one correspondence between
the independent solutions of the cluster equations and the relevant fields.
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It should be said that the absence of internal symmetries of the above models has played
an important role in carrying out our computations. In fact, in this situation one can exploit
the cluster equations (1.6) in their full generality. It would be interesting to see how the
results of [10] generalize to the case of quantum field theories with internal symmetries
which induce selection rules on the matrix elements. Another important open problem is
also to understand the meaning of the cluster properties in quantum field theories which
cannot be regarded as deformation of conformal models. A complete understanding of all
these aspects of the FFs would allow us to improve our understanding of the asymptotic
high-energy regime of quantum theories and their operator content.
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Appendix A

In this appendix we give the general parametrization adopted throughout the paper for two-
particle FFs. TheS-matrices of the specific models analysed in this paper are given in
appendix B where the generic amplitude

Sab(θ) =
∏
x∈Pab

(x)px
∏
y∈Zab

(−y)qy (A.1)

is written adopting the notation

(α) = tanh1
2(θ + iπα)

tanh1
2(θ − iπα)

(A.2)

and the positive rational indicesx and y label the poles and the zeros displayed by the
amplitude in the physical strip Imθ ∈ [0, π ]. The bound state simple poles of theS-matrices
are identified by superscripts which denote the particles produced. There are however also
simple poles of a different nature which have been labelled with sufficesB andD that are
not related to any bound state and are due to multiparticle scattering processes of the kind
shown in figures 2 and 3 respectively. The fact that these diagrams (which usually produce
second- and third-order poles) are here responsible for simple poles is due to the occurrence
of zeros in theS-matrix factors carried by the internal crossing lines [20]. Higher-order
poles are present as well and, among these, in the model [M( 2

9)](1,4), some triple poles
labelled by an asterisk which also have a non-standard diagrammatic interpretation. The
understanding of the nature of all the poles is necessary in order to assign the correct pole
structure to the FFs.

The general two-particle FF of a scalar operator8(x)

F8ab(θ1− θ2) = 〈0|8(0)|Aa(θ1)Ab(θ2)〉 (A.3)

will be parametrized by

F8ab(θ) = Q8
ab(θ)

Fmin
ab (θ)

Dab(θ)
. (A.4)

where the ‘minimal’ FF

Fmin
ab (θ) = (−i sinh(θ/2))

1−Sab(0)
2

∏
x∈P g

px
x (θ)∏

y∈Zab g
qy
y (θ)

(A.5)
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which has neither zeros nor poles in the physical strip, is written in terms of the function

gx(θ) =
∞∏
k=0


[

1+
[ iπ−θ

2π

n+ 1
2+ x

2

]2
] [

1+
[ iπ−θ

2π
n+1− x

2

]2
]

[
1+

[ iπ−θ
2π

n+1+ x
2

]2
] [

1+
[ iπ−θ

2π

n+ 3
2− x

2

]2
]

k+1

. (A.6)

This function is normalized bygx(iπ) = 1 and behaves asymptotically as

gx(θ) ∼ e|θ |/2 for θ →∞. (A.7)

The factorQ8
ab(θ) in (A.4) is a polynomial in coshθ carrying the dependence on the specific

operator8(x)

Q8
ab =

kmax
ab,8∑
k=0

a
(k)
ab,8 coshk(θ). (A.8)

The most subtle element in the parametrization of the FFs is represented by the structure of
the poles which, in equation (A.4) are introduced by the factorDab(θ). In order to establish
which poles are to be found in a FF one must in general have a complete understanding
of the nature of the poles in the correspondingS-matrix element in terms of microscopical
processes. We will write in general,

Dab(θ) =
∏
x∈Pab

P ixx P
jx
1−x (A.9)

where the set of indices is defined in (A.1) and

Px(θ) = cos(πx)− cosh(θ)

2 cos2( πx2 )
. (A.10)

For bound-state simple poles and ordinary higher-order poles of theS-matrix, the correct
rule for determining the indicesix andjx is given by [3]

ix = n jx = n− 1 if px = 2n− 1

ix = n jx = n if px = 2n.
(A.11)

For simple poles of type(x)B and(x)D one can show that the correct indices are stillix = 1
andjx = 0, as for a bound state simple pole.

Notice, however, that the poles of the FFs induced by the triple poles labelled with
∗ in [M( 2

9)](1,4) do not fall within the above analysis. Their general expressions are not
investigated further here since these FFs were not needed in the present work.

As a final remark, notice that every function(α) could be equivalently written as(1−α)
without changing theS-matrices. However, the pole prescription given above for the FFs
is sensitiveto this change in the case of odd-order poles. Therefore, all the labelsα in the
S-matrices reported here have been chosen to give (in units of iπ ) the value of the direct
s-channel resonant angles in the case of bound state odd poles and also in the case of poles
of typeB andD†. Only with this choice, the above prescription gives the correct poles of
the FFs.

With parametrization (A.4), the two-particle FF of a general operator8 is therefore
completely determined after fixing the coefficientsa(k)ab,8 in expansion (A.8).

† For s-channel in these cases we mean the one defined by figures 2 and 3 with particles flowing upwards.
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Appendix B

In this appendix we give theS-matrices of the integrable models analysed in this work. The
function (α) used in the tables is given in equation (A.2). Anomalous simple poles have
been labelled withB andD, while the anomalous triple poles of the model [M( 2

9)](1,4) are
identified with∗.

Table B1. S-matrix and mass ratios of the [M( 2
7)](1,2) model.

S11(θ) =
1

( 2
3)

2

( 1
9) (− 2

9)

S12(θ) =
1

( 17
18) (

11
18)B

S22(θ) =
2

( 2
3) (

8
9)B (

5
9)D

m2 = 2 cos
π

18
m1 = 1.9696. . . m1

Table B2. S-matrix and mass ratios of the [M( 2
7)](1,3) model.

S11(θ) =
2

( 2
5)

S12(θ) =
1

( 4
5)

2

( 3
5)

S22(θ) =
1

( 4
5) (

2
5)

2

m2 = 2 cos
π

5
m1 = 1.618 03. . . m1

Table B3. S-matrix and mass ratios of the [M( 2
9)](1,2) model.

S11(θ) =
1

( 2
3)

2

( 1
12) (− 1

4)

S12(θ) =
1

( 23
24)

3

( 1
8) (

5
8)B (− 5

24)

S13(θ) =
2

( 11
12) (

7
12)B

S22(θ) =
2

( 2
3) (

11
12)

2 ( 7
12)D (− 1

4)

S23(θ) =
1

( 23
24) (

7
8)B (

5
8)B (

13
24)D

S33(θ) =
3

( 2
3) (

11
12)B (

5
6)B (

7
12)D (

1
2)D

ma =
sin aπ

24

sin π
24

m1 a = 1, 2, 3
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Table B4. S-matrix and mass ratios of the [M( 2
9)](1,3) model.

S11(θ) =
2

( 2
7)

S12(θ) =
1

( 6
7)

3

( 3
7)

S13(θ) =
2

( 5
7)

3

( 4
7)

S22(θ) =
3

( 4
7) (

5
7)

2

S23(θ) =
1

( 6
7)

2

( 5
7) (

3
7)

2

S33(θ) =
1

( 6
7) (

3
7)

2 ( 5
7)

2

ma =
sin aπ

7

sin π
7

m1 a = 1, 2, 3

Table B5. S-matrix and mass ratios of the [M( 2
9)](1,4) model.

S11(θ) =
1

( 2
3)

2

( 7
15)

3

( 2
15) (− 1

15) (− 2
5)

S12(θ) =
1

( 23
30)

3

( 13
30)

S13(θ) =
1

( 14
15)

2

( 11
15)

4

( 1
5) (

3
5)

2 (− 2
15) (− 1

3)

S14(θ) =
3

( 13
15) (

8
15)B (

2
3)

2

S22(θ) =
2

( 2
3)

4

( 1
5) (

8
15)B

S23(θ) =
1

( 5
6) (

1
2)B (

7
10)B (

11
30)B

S24(θ) =
2

( 9
10) (

23
30)B (

3
10)B (

19
30)B (

17
30)

2

S33(θ) =
3

( 2
3)

3 ( 2
15)

2 ( 7
15)

2 (− 1
15) (− 2

5)

S34(θ) =
1

( 14
15) (

4
5)B (

7
15)D (

11
15)

2 ( 3
5)

3∗

S44(θ) =
4

( 2
3)

3∗ (
8
15)

3∗ (
2
5)D (

11
15)B (

13
15)B (

1
5)

2

m2 = 2 cos
7π

30
m1 = 1.486 29. . . m1

m3 = 2 cos
π

15
m1 = 1.956 30. . . m1

m4 = 2 cos
π

10
m2 = 2.827 09. . . m1
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